1. Проблема перебора
Вопрос: равны ли классы P и NP?
Пояснение: классом Р называется множество задач, которые компьютер может решить за полиноминальное время. К таким задачам относится поиск по таблице данных, все арифметические действия, а также сортировка списков. Класс NP – это все те задачи, правильность ответа которых можно проверить быстро.
Суть: нужно доказать или опровергнуть равенство классов. Определить взаимосвязь между тяжестью решения задачи и тяжестью проверки ее правильного ответа.
Задача все еще не решена, но большинство экспертов полагает, что P не равно PN. Если же будет доказано обратное, математику ждет настоящая революция.
2. Уравнения Навье – Стокса
Пояснение: Данное уравнение описывает, как себя ведут потоки жидкости и газа при определенных условиях. Данные уравнения применяются при строительстве самолетов, в метеорологии, при рассчете аэродинамических показателей.
Вопрос: если известно состояние жидкости в определенный момент времени и характеристики ее движения, есть ли решение, которое было бы верно для будущего времени?
Суть: Для получения премии достаточно опровергнуть или доказать существование и гладкость решения в любом из случаев. Если вопрос будет решен, метеорологи смогут, наконец, давать точные прогнозы!
3. Массовая щель
Пояснение: теория Янга-Миллса использует общую математическую теорию для объединения электромагнитного, слабого и сильного взаимодействия, которое связано с калибровочной симметрией. Эти уравнения дают почву для гипотезы массовой щели.
Вопрос: сформулировать теоретическую базу для объяснения существования в природе массовых щелей.
4. Гипотеза Римана
Пояснение: простые числа это те, которые можно поделить только на самих себя и на единицу. За все время, люди так и не нашли закономерности распространения таких чисел среди натуральных. При этом немецкий математик Бернхард Риман предложил точную формулу для расчёта числа таковых чисел, не превышающих заданной величины. Гипотеза Римана была проверена на первых 10 000 000 000 000 решениях.
Вопрос: нужно доказать гипотезу Римана.
5. Гипотеза Бёрча — Свиннертон-Дайера
Вопрос: доказать упомянутую выше гипотезу, которая предполагает, что число решений алгебраических уравнений, определяется значением связанной с уравнением дзета-функции в точке 1.
Пояснение: математики всегда интересовались доказательством многообразия решений алгебраического уравнения. Целые решения описал еще Евклид. А вот на создание теоремы Ферма ушло более 300 лет.
6. Гипотеза Ходжа
Формулировка гипотезы: «На любом невырожденном проективном комплексном алгебраическом многообразии любой класс Ходжа представляет собой рациональную линейную комбинацию классов алгебраических циклов».
Вопрос: нужно доказать или опровергнуть данное утверждение.
Пояснение: (только не пытайтесь себе этого представить!) математика не ограничивается тремя измерениями. Так, в четырехмерном пространстве измерений по данной гипотезе может быть сколько угодно.